Introduction to DSGE Models

Luca Brugnolini

January 2015

Introduction to DSGE Models

Program

- DSGE Introductory course (6h)
 - Object: deriving DSGE models
- Computational Macroeconomics (10h) (Prof. L. Corrado)
 - Object: techniques to solve rational expectations linear models like DSGE (requires MATLAB)
- Topics:
 - DSGE History (Galì (2008) ch.1)
 - Real business cycle models (Galì (2008) ch.2)
 - New-Keynesian models (Galì (2008) ch.3)

Motivation Why DSGE?

- Historical reason: Neo-Classical Synthesis
 - Real Business Cycle (RBC, "fresh water") and New Keynesian (NK, "salt water") literature (Blachard, 2000 and 2008)
- Theoretical reason: Robust to Lucas (1976), Lucas and Sargent (1978) Critique
 - Microfoundation of macroeconomic models
- Practical reason: CBs macroeconomic models
 - Bank of Canada (ToTEM), Bank of England (BEQM), European Central Bank (NAWM), US Federal Reserve (SIGMA), IMF (GEM), European Commission (QUEST III)

verview Motivation DSGE Neoclassical Synthesis RBC Model

DSGE Model What is a DSGE

- *Dynamic* means there are intertemporal problems and agents rationally form expectations;
- Stochastic means exogenous stochastic process may shift aggregates
- General Equilibrium means that all markets are always in equilibrium
 - Exogenous/unpredictable shocks may temporally deviate the economy from the equilibrium

RBC Revolution

Main Points

- Seminal papers Kydland and Prescott (1982) and Prescott (1986)
- Efficiency of the business cycle (BC)
 - BC is the outcome of the real forces in an environment with perfect competition
- Technology is the main driver of the BC
 - Technology (Total factor productivity/Solow residual) is something exogenous
- No monetary policy references
 - Including money leads to "monetary neutrality". Money has no effects on real variables, thus CBs have no power

NK Features Main Points

- Monopolistic Competition
 - Each firm have monopolistic power in the market she operates
- Nominal rigidities
 - Sticky price/wage
- Money is not neutral
 - Consequences of rigidities
 - However, money is neutral in the long-run

Neo-classical Synthesis

Main Points

- Use of the RBC way of modelling
 - Infinitely living agents maximize utility given by consumption and leisure
 - Firms have access to the same technology and are subjected to a random shift
- Implementation of NK Features
 - Stiky price/wage
 - Monopolistic Competition
 - Money is not neutral -> CBs have room for adjusting rigidities

Households

Assumptions:

- Perfect competition, homogeneous goods, zero profits
- Flexible price and wage
- No capital, no investments and no government
- Discrete time
- Rationally infinity-lived price taker agents
- Complete market and perfect information
- Money is unit of account (no medium of exchange or reserve of value)
- Regularity conditions on the utility function hold
- Additively separable consumption and leisure (CRRA functional form)
 - U differentiable and has continuous I. II derivatives
 - $\partial U/\partial C_t > 0$, $\partial U/\partial N_t < 0$, $\partial U/\partial C_t^2 < 0$ and $\partial U/\partial N_t^2 < 0$

Households

$$\max_{C_t, N_t} \quad \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\phi}}{1+\phi} \right) \tag{1}$$

s.t.

$$P_tC_t + Q_tB_t \le B_{t-1} + W_tN_t + T_t \tag{2}$$

$$\lim_{T \to \infty} \mathbb{E}_t \left\{ B_T \right\} \ge 0, \quad \forall t \tag{3}$$

Variables: C_t : consumption; N_t : labor; B_t : bond; P_t : price; Q_t : bond price; W_t : wage; T_t : lump-sum transfer/tax.

Parameters: β : discount factor; σ : coef. of relative risk aversion/reciprocal of intertemporal elasticity of substitution; ϕ : inverse of the elasticity of work w.r.t. wage (inverse of Frish elasticity).

January 2015

Households (cont'd)

F.O.C.

$$\frac{W_t}{P_t} = N_t^{\phi} C_t^{\sigma} \tag{4}$$

$$\mathbb{E}_{t} \left[\beta \left(\frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{1}{\pi_{t+1}} \right] = Q_{t}$$
 (5)

$$\max_{N_t} P_t Y_t - W_t N_t \tag{6}$$

s.t.

$$Y_t = A_t N_t^{1-\alpha} \tag{7}$$

$$a_t = \rho_a a_{t-1} + \epsilon_{a,t}, \quad |\rho_a| < 1, \quad \epsilon_{a,t} \sim \mathcal{N}(0, \sigma_a)$$
 (8)

Variables: Y_t : output; A_t : technology; N_t : labor; P_t : price; W_t : wage; $a_t \equiv log(A_t)$; Parameters: α output elasticity w.r.t. labor (return to scale determinant).

11 / 23

Luca Brugnolini Introduction to DSGE Models January 2015

F.O.C.

$$\frac{W_t}{P_t} = (1 - \alpha)A_t N_t^{-\alpha} \tag{9}$$

- Agents maximize utility subject to the budget constraint;
- Firms maximize profits subject to the production function;
- Goods and labor markets clear.

The last point in this setting without capital and government means

$$Y_t = C_t \tag{10}$$

13 / 23

Luca Brugnolini

Problem: systems of non-linear rational expectation difference equations are hard to solve.

A possible solution: take the log and linearize around the non-stochastic steady state using the F.O. Taylor expansion.

$$f(x) \approx f(x_{ss}) + \frac{\partial f(x)}{\partial x}|_{x_{ss}}(x - x_{ss})$$
 (11)

Log-Linearization (cont'd)

An easy way to log-linearize (up to a constant) following Uhlig (1999):

- Set $X_t = Xe^{\hat{x}_t}$ (if $X_t^{\alpha} = X^{\alpha}e^{\alpha\hat{x}_t}$)
- Approximate $e^{\hat{x}_t} \approx (1 + \hat{x}_t)$ (if $e^{\alpha \hat{x}_t} \approx (1 + \alpha \hat{x}_t)$)
- $\hat{x}_t \hat{y}_t \approx 0$
- Use the Steady State relationships to remove the remaining constants

Non-Stochastic Steady State (NSSS)

$$Q = \beta \tag{12}$$

$$\frac{W}{P} = N^{\phi} C^{\sigma} \tag{13}$$

$$\frac{W}{P} = (1 - \alpha)N^{-\alpha} \tag{14}$$

$$Y = N^{(1-\alpha)} \tag{15}$$

$$C = Y$$

Luca Brugnolini

nolini Introduction to DSGE Models

Models January 2015

(17)

(18)

(19)

(20)

(21)

RBC Model

 $\hat{c}_t = \mathbb{E}_t \hat{c}_{t+1} - \sigma^{-1} \hat{r}_t$

 $\hat{\omega} = \phi \hat{\mathbf{n}}_t + \sigma \hat{\mathbf{c}}_t$

 $\hat{y}_t = \hat{c}_t$

$$\hat{\omega} = -\alpha \hat{\mathbf{n}}_t + \mathbf{a}_t$$

$$\hat{y}_t = (1 - \alpha)\hat{n}_t + a_t$$

Log-Linear Model (cont'd)

$$\hat{r}_t = \hat{i}_t - \mathbb{E}_t \pi_{t+1} \tag{22}$$

$$\hat{\omega}_t = \hat{\mathbf{w}}_t - \hat{\mathbf{p}}_t \tag{23}$$

Results:

- Real variables are determined independently of monetary policy
- Not clear how conduct monetary policy (indeterminacy)
- Nominal variables may be pinned-down setting an interest rate rule

$$\hat{i}_t = \phi_\pi \pi_t$$

(24)

Linear Rational Expectation Model

$$A(\Theta)\mathbb{E}_t x_{t+1} = B(\Theta)x_t + C(\Theta)\epsilon_t$$
 (25)

- The endogenous variables are $x_t \equiv \{\hat{c}_t, \hat{n}_t, \hat{w}_t, \hat{y}_t, \hat{r}_t, a_t\}$.
- The exogenous variable is $\epsilon_t \equiv \{\epsilon_{a,t}\}.$
- $A(\Theta)$, $B(\Theta)$ and $C(\Theta)$ are matrices containing time invariant structural parameters.
- The parameter space is $\Theta \equiv [\alpha, \beta, \phi, \sigma, \rho_a, \sigma_a]$

Linear Rational Expectation Model (cont'd)

There are many linear rational expectation solution methods:

- Balchard and Khan (1980)
- King and Watson (1998)
- Sims (2001)
- Uhlig (1999)

Returning (up to measurement errors)

$$x_{t+1} = D(\Theta)x_t + E(\Theta)\epsilon_t \tag{26}$$

Where $D(\Theta)$ and $E(\Theta)$ are matrices depending on parameters Θ

Parameters

Two approaches to deal with the parameters $\Theta = [\alpha, \beta, \phi, \sigma, \rho_a, \sigma_a]$

- Calibration
 - Calibration IS NOT estimation!
 - Long-run relationship (Hours worked per Household)
 - Results obtained in microeconomic studies (risk aversion, discount factor)
- Estimation
 - Matching Moments (GMM, Simulated GMM, Indirect Inference)
 - Maximum Likelihood
 - Bayesian Estimation

verview Motivation DSGE Neoclassical Synthesis RBC Model

RBC Model Standard Calibration

Parameter	Description	Value
σ	Intertemporal elasticity of substitution	1.0
β	Discount factor	0.99
ϕ	Frisch elasticity of labor supply	1.0
α	Labor elasticity in the production function	0.36
ϕ_π	Reaction coefficient on inflation	1.50
$ ho_{a}$	Persistence of TFP shock	0.95
σ_{a}	Volatility of TFP shock	0.0072

TFP shock Impulse Response Functions

RBC Model Simulated data

